
1

Abstract 1

Word Sense Disambiguation (WSD) poses a 2

significant challenge within the field of Natural 3

Language Processing (NLP), requiring the 4

accurate determination of a word's intended 5

meaning in a given context. This document aims 6

to explore diverse strategies documented in the 7

literature for solving this issue. These strategies 8

are then applied to the provided dataset, 9

evaluating their effectiveness. 10

Additionally, the document analyzes the 11

connection between identifying coarse-grained 12

senses and enhancing the precise classification 13

of fine-grained senses, and vice versa. By 14

investigating this relationship, the document 15

aims to uncover the synergistic effects of these 16

seemingly disparate processes. 17

1 Introduction 18

WSD aims to solve the ambiguity of word meaning 19

in context; when a word has multiple meaning 20

(polysemy) is fundamental to disambiguate the 21

given target word in order to fully understand the 22

complete meaning of a sentence. In order to 23

accomplish this task two big group of technique 24

have been applied in literature during time: fully 25

neural approaches ([1][2] and many others) and 26

knowledge-based approaches [3][4]. Here in this 27

document, we will explore neural approaches 28

applied on the given dataset. Moreover, a couple of 29

experiment have been devoted to study how might 30

be possible to combine in a single model the power 31

to extrapolate in hierarchical way deeper semantic 32

in form of word senses. 33

2 Methodology 34

As said, have been studied models in the neural 35

approach family for WSD. All the models 36

generated consists of an encoder and a 37

classification part [2]. The encoder extracts the 38

embeddings of the sentence and the features are 39

used to predict the senses using the classifier. 40

2.1 Encoder 41

BERT model as the encoder [5]: it is responsible of 42

tokenization and generate the contextualized 43

embedding for the sentence (the hidden states for 44

each token with dimension H). 45

For each word to disambiguate the network 46

takes the mean of the last 4 layer of BERT [6]. 47

With these settings the task is being translated in 48

a token-to-token tagging task: assign to each word 49

to be disambiguated the sense predicted. However, 50

an extra step is required to avoid the token 51

fragmentation of a word and retrieve the complete 52

embedding information: the BERT tokenizer might 53

split a single word in 2 or more tokens; when this 54

happens, the model identifies the case and then, 55

considering a list of tokens mapped to the same 56

word, their hidden states are averaged: 57

𝑓 = 	
1
𝑘
& ℎ!"#

$%&

#'&
 58

In the equation ℎ(is the hidden state of token in 59

the list of the k tokens mapped to the same word. 60

Image 1, (a) shows a schema about the encoding 61

process. 62

Moreover, have been tested two implementation 63

strategy for the forward of the linear layer: 64

1. f contains the embeddings for all the tokens 65

of the sentence; 66

2. f contains only the embeddings of the word 67

to be disambiguated: from the f tensor are 68

removed all the ℎ(correspondent to token i 69

which are not mapped to a word to be 70

disambiguated. 71

2.2 Classifier 72

All the classifiers are fully connected linear-layers 73

and have been used 3 layers in the different settings 74

of the experiments: 75

L&(𝑥) = 𝑊&	𝑥 + 𝑏(and 𝑊1 ∈	ℝ|𝐶𝐺|	𝑥	𝐻	 76

WSD on hierarchical-organized semantics

Emanuele Rucci, 2053183

2

L/(𝑥) = 𝑊/	𝑥 + 𝑏(and 𝑊2 ∈	ℝ|𝐹𝐺|	𝑥	𝐻 77

L2(𝑥) = 𝑊2	𝑥 + 𝑏(and 𝑊3 ∈	ℝ|𝐹𝐺|	𝑥	|𝐶𝐺| 78

CG and FG represent the sets of coarse and fine 79

grained senses in the dataset. 80

Before to apply any of this linear layer, a mask is 81

applied to the logits (the output of the encoder) in 82

order to ignore all the logits value for the tokens 83

mapped to word that doesn’t have to be 84

disambiguated; differently from [2], this allows to 85

have only one linear layer for all the polyseme 86

instead of many ones, each for a polyseme. 87

Image 1, (b) shows this mask process. 88

2.3 One model for coarse and fine 89

An aspect of the given task that has been 90

assumed, is the capacity of a model to benefit from 91

the hierarchical organization of the senses. 92

To this purpose have been tested two model’s 93

architecture: 94

- Fine grained model to deduct coarse grained 95

(DeductCg – Model 8) 96

- Joint learning of coarse and fine grained and 97

re-deduction of the fine grained (Fine-98

Coarse – Model 9) 99

2.3.1 Deduct Cg Architecture 100

The first architecture that allows to deduct 101

automatically the coarse-grained sense, consist in 102

the training of the previous discussed architecture 103

using the fine-grained classifier. Given the 104

prediction of the model for a given word to be 105

disambiguated the mapping file from the dataset is 106

used to get the ”super-sense” label: the coarse 107

grained sense. 108

 109

2.3.2 Fine-Coarse Architecture 110

Another study has been conducted based on the 111

assumption that both coarse and fine classifications 112

could mutually enhance each other. Unlike the 113

previously discussed approach of ascending the 114

semantic hierarchy, this study takes a different 115

stance. Rather than attempting to move upward, the 116

model is designed to systematically learn the 117

importance of both tasks concurrently over time. 118

In the Experiments section will be discussed in 119

the detail how this idea has been realized. 120

3 Experiments 121

3.1 Dataset 122

Table 1 summarizes dataset statistics: It comprises 123

6 files with sentences in natural language, part-of-124

speech info, and lemmas. The sense vocabulary 125

uses WordNet and is composed of 2158 CG senses 126

and 4476 FG senses. Additionally, there's a 127

mapping from fine-grained to coarse-grained 128

senses. Training used accuracy, equivalent to 129

micro-F1 for single-sense word classification. 130

3.2 Experiments List and Setup 131

Table 2 reports all the experiment that have been 132

conducted in this study as well as their identifier. 133

The metric that has been used is the F1-score, all 134

the models have been trained for 100 epochs (some 135

experiments for less epoch due to Colab session 136

duration limit but all of them were not improving 137

anymore). The optimizer is Adam. The learning 138

rate has been reduced with a StepLR scheduler 139

with step size = 1 and gamma = 0.1 starting from 140

1e-3. 141

3.3 Model number 1-2 142

These models, trained for CG WSD follow exactly 143

what is explained in the paragraph 2.2 and they 144

both use the implementation 1 for the f. 145

3.4 Model number 3-4-5 146

Also these models are trained for CG WSD but 147

they use instead the implementation 2 for f. 148

3.5 Model number 6 149

In order to leverage the capacity of LSTM of 150

capturing contextual information, in this 151

experiment, a bidirectional LSTM [7] with 2 layers 152

on top of f is applied before to use the 𝐿& layer: 153

𝑙𝑜𝑔𝑖𝑡𝑠56 = 𝑀𝑎𝑠𝑘56 ∗ 𝐿&(𝐿𝑆𝑇𝑀(𝑓)) 156

Here in this experiment the best basic model (n. 2) 154

of previous experiments is used to generate f. 155

3.6 Model number 7 157

In this experimental setup, employing the identical 158

architecture as model 2, the focus was on training 159

the model to forecast CG senses. This was achieved 160

by enabling finetuning for the final 4 layers of the 161

BERT model. The rationale behind this approach 162

was to investigate the extent to which the 163

specificity of BERT embeddings could influence 164

the model's performance. 165

3.7 Model number 8 166

Building upon the insights provided in paragraph 167

2.3.1, the model undertakes the dual prediction of 168

both Fine-Grained (FG) senses and Coarse-169

Grained (CG) senses. The calculation of logits, 170

3

instrumental in loss computation, is executed as 171

follows: 172

𝑙𝑜𝑔𝑖𝑡𝑠76 = 𝑀𝑎𝑠𝑘76 ∗ 𝐿/(𝑓) 173

𝑝76 = max	(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑙𝑜𝑔𝑖𝑡𝑠76)) 174

𝑝56 = FG2CG (𝑝76) 175

FG2CG is the mapping function that use the given 176

map file to convert a FG sense into CG sense. 177

The central premise behind this model is its 178

optimization for enhancing FG accuracy. The 179

rationale underlying this approach is that if the 180

model attains high performance levels in FG tasks, 181

it is possible to excel in the CG context as well. In 182

essence, a proficient model capable of grasping 183

deeper semantic is expected to reach high 184

performance in more abstract semantic task 185

(clearly only when the task is organized in a formal 186

hierarchical way). 187

3.8 Model number 9 188

To encode the idea in paragraph 2.3.2 in a neural 189

architecture, the first step is to consider a Loss 190

function that is the combination of the two losses: 191

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠76 + 	𝐿𝑜𝑠𝑠56 192

This setup enables the joint optimization of weights 193

both to decrease CG and FG Loss. 194

Regarding the classification layers: just after the 195

BERT encoder as previous discussed, there are two 196

linear layers (L1 and L3): 197

𝑙𝑜𝑔𝑖𝑡𝑠56 =	𝑀𝑎𝑠𝑘56 ∗ B𝐿&(𝑓)C 198

𝑙𝑜𝑔𝑖𝑡𝑠76 =	𝑀𝑎𝑠𝑘76 ∗ 𝐿2(𝑙𝑜𝑔𝑖𝑡𝑠56)) 199

The primary classification layer (L1) initiates the 200

classification process. Subsequently, the L3 layer 201

comes into play, facilitating the transformation of 202

logits into a mapping of fine-grained senses; 203

Applying the candidate mask to 𝑙𝑜𝑔𝑖𝑡𝑠56 it 204

possible to get the CG prediction, and in the same 205

way it is possible to get FG prediction applying 206

the other candidate mask to the 𝑙𝑜𝑔𝑖𝑡𝑠76 . Much 207

like the prior model, the FG prediction is 208

employed to deduce the CG prediction. However, 209

a potential discrepancy between the CG prediction 210

and the deduced CG prediction can arise. In 211

anticipation of this, the deduced coarse-grained 212

predictions are stored, addressing the likelihood of 213

disparities between the two predictions. 214

This model emits as output:	215

𝑝76 	= max	(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑙𝑜𝑔𝑖𝑡𝑠76)) 216

𝑝56 = max	(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑙𝑜𝑔𝑖𝑡𝑠76) 217

𝑝56%9:; = FG2CG (𝑝76) 218

3.9 Model number 10 219

Random baseline models which consist of a 220

random choice over the candidate for each word 221

to disambiguate. 222

4 Results 223

The results in Table 3 reveal important insights 224

about the models. Here are some key points: 225

Embedder Impact on F1: The CG F1 scores show 226

moderate variability across models. Surprisingly, 227

the basic version of BERT outperforms the larger 228

version, suggesting that greater complexity 229

doesn’t necessarily yield to superior performance. 230

This phenomenon raises question regarding the 231

trade-off between number of parameters, 232

generalization power and robustness of the 233

outcomes. 234

Implementation 2 for f: Although the F1 scores 235

weren't high, using Implementation 2 for f sped up 236

the forward pass due to smaller tensor dimensions. 237

Direct CG Training: Models 2 achieve high CG 238

F1 scores (0.9150), showing that even a basic 239

architecture can handle the task well. 240

Model 8 attains the highest metric value, despite a 241

minimal difference from Model 2. This highlights 242

that focusing on deeper semantic aspects yields 243

the best performance at higher semantic levels. 244

Joint Learning (Model 9): jointly learning 245

hierarchical sense divisions, requires further 246

exploration for comprehensive understanding. 247

This experiment prompts further investigation. 248

In summary, incorporating hierarchical semantic 249

information involves a blend of neural and 250

symbolic approaches, aligning with previous 251

works. Future research will delve into this 252

emerging AI model category. 253

 254

 255

 256

 257

 258

 259

4

 260

 261

 262

 263

 264

 265

 266

 Training Validation Test
Sentences 12339 685 686
sentence with 1
candidate

7723 451 425

Sentence length
mean

40.80 40.95 41.22

Table 1: Statistic for the training validation and test data
plus the count of the number of words with 1 candidate

and the mean of words length.

ID Granularity Embedder
1 CG Bert Large Cased
2 CG Bert Base Cased
3 CG Bert Large Cased
4 CG Bert Large

uncased
5 CG Bert Base Cased
6 CG Bert Base Cased +

LSTM
7 CG Bert Based Cased
8 FG&CG Bert Based Cased
9 FG&CG Bert Based Cased

Table 2: Experiment List: 1,2,6,7 with implementation 1
of the embedding, 2-3-4 with implementation 2, 8 with

implementation 3 and 9 with implementation 4;
Exp 8 has the last 4 layers of Bert finetuned.

Exp

ID CG F1 FG F1
1 0.9094 /
2 0.9150 /
3 0.8752 /
4 0.8629 /
5 0.8668 /
6 0.8920 /
7 0.9045 /
8 0.9151 0.8041
9 0.9143 0.7976
10 0.68 0.52

Table 3: Metric value for the models discussed in the
experiments section. The ID column indicated the model

identifier. For model 8, is reported the deducted CG
because is always higher than the predicted CG metric.

Model 10 represent the random Baseline model

Figure 1: (a) The encoding part of the model. (b) The mask process.

(a)

(b)

5

References 267

1. “ Word Sense Disambiguation with Recurrent 268

Neural Networks” – Alexander Popov, 269

Linguistic Modelling Department IICT-BAS 270

2. “Using BERT for Word Sense 271

Disambiguation” - Jiaju Du, Fanchao Qi, 272

Maosong Sun 273

3. “Automatic sense disambiguation using 274

machine readable dictionaries: how to tell a 275

pine cone from an ice cream cone”- Michael 276

Lesk. 1986. 277

4. “An Enhanced Lesk Word Sense 278

Disambiguation Algorithm through a 279

Distributional Semantic Model” - Basile, 280

Caputo, Semeraro 2014 281

5. [BERT: Pre-training of Deep Bidirectional 282

Transformers for Language Understanding] 283

(Devlin et al., NAACL 2019) 284

6. [Breaking Through the 80% Glass Ceiling: 285

Raising the State of the Art in Word Sense 286

Disambiguation by Incorporating Knowledge 287

Graph Information](Bevilacqua & Navigli, 288

ACL 2020) 289

7. Hochreiter, Sepp & Schmidhuber, Jürgen. 290

(1997). Long Short-term Memory. Neural 291

computation. 9. 1735-80. 292

10.1162/neco.1997.9.8.1735. 293

 294

https://arxiv.org/pdf/1909.08358.pdf
https://arxiv.org/pdf/1909.08358.pdf
https://arxiv.org/pdf/1909.08358.pdf
https://dl.acm.org/doi/pdf/10.1145/318723.318728
https://dl.acm.org/doi/pdf/10.1145/318723.318728
https://dl.acm.org/doi/pdf/10.1145/318723.318728
https://dl.acm.org/doi/pdf/10.1145/318723.318728
https://aclanthology.org/C14-1151.pdf
https://aclanthology.org/C14-1151.pdf
https://aclanthology.org/C14-1151.pdf
https://aclanthology.org/C14-1151.pdf
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/2020.acl-main.255
https://aclanthology.org/2020.acl-main.255
https://aclanthology.org/2020.acl-main.255
https://aclanthology.org/2020.acl-main.255
https://aclanthology.org/2020.acl-main.255
https://www.researchgate.net/publication/13853244_Long_Short-term_Memory
https://www.researchgate.net/publication/13853244_Long_Short-term_Memory
https://www.researchgate.net/publication/13853244_Long_Short-term_Memory
https://www.researchgate.net/publication/13853244_Long_Short-term_Memory

