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Abstract 1 

Word Sense Disambiguation (WSD) poses a 2 

significant challenge within the field of Natural 3 

Language Processing (NLP), requiring the 4 

accurate determination of a word's intended 5 

meaning in a given context. This document aims 6 

to explore diverse strategies documented in the 7 

literature for solving this issue. These strategies 8 

are then applied to the provided dataset, 9 

evaluating their effectiveness. 10 

Additionally, the document analyzes the 11 

connection between identifying coarse-grained 12 

senses and enhancing the precise classification 13 

of fine-grained senses, and vice versa. By 14 

investigating this relationship, the document 15 

aims to uncover the synergistic effects of these 16 

seemingly disparate processes. 17 

1 Introduction 18 

WSD aims to solve the ambiguity of word meaning 19 

in context; when a word has multiple meaning 20 

(polysemy) is fundamental to disambiguate the 21 

given target word in order to fully understand the 22 

complete meaning of a sentence. In order to 23 

accomplish this task two big group of technique 24 

have been applied in literature during time: fully 25 

neural approaches ([1][2] and many others) and 26 

knowledge-based approaches [3][4]. Here in this 27 

document, we will explore neural approaches 28 

applied on the given dataset. Moreover, a couple of 29 

experiment have been devoted to study how might 30 

be possible to combine in a single model the power 31 

to extrapolate in hierarchical way deeper semantic 32 

in form of word senses. 33 

2 Methodology 34 

As said, have been studied models in the neural 35 

approach family for WSD. All the models 36 

generated consists of an encoder and a 37 

classification part [2]. The encoder extracts the 38 

embeddings of the sentence and the features are 39 

used to predict the senses using the classifier. 40 

2.1 Encoder 41 

BERT model as the encoder [5]: it is responsible of 42 

tokenization and generate the contextualized 43 

embedding for the sentence (the hidden states for 44 

each token with dimension H). 45 

For each word to disambiguate the network 46 

takes the mean of the last 4 layer of BERT [6]. 47 

With these settings the task is being translated in 48 

a token-to-token tagging task: assign to each word 49 

to be disambiguated the sense predicted. However, 50 

an extra step is required to avoid the token 51 

fragmentation of a word and retrieve the complete 52 

embedding information: the BERT tokenizer might 53 

split a single word in 2 or more tokens; when this 54 

happens, the model identifies the case and then, 55 

considering a list of tokens mapped to the same 56 

word, their hidden states are averaged: 57 

𝑓 = 	
1
𝑘
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 58 

In the equation ℎ(is the hidden state of token in 59 

the list of the k tokens mapped to the same word. 60 

Image 1, (a) shows a schema about the encoding 61 

process. 62 

Moreover, have been tested two implementation 63 

strategy for the forward of the linear layer:  64 

1. f contains the embeddings for all the tokens 65 

of the sentence; 66 

2. f contains only the embeddings of the word 67 

to be disambiguated: from the f tensor are 68 

removed all the ℎ( correspondent to token i 69 

which are not mapped to a word to be 70 

disambiguated. 71 

2.2 Classifier 72 

All the classifiers are fully connected linear-layers 73 

and have been used 3 layers in the different settings 74 

of the experiments:  75 

L&(𝑥) = 𝑊&	𝑥 + 𝑏(	 and 𝑊1  ∈	ℝ|𝐶𝐺|	𝑥	𝐻	   76 
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L/(𝑥) = 𝑊/	𝑥 + 𝑏(	 and 𝑊2  ∈	ℝ|𝐹𝐺|	𝑥	𝐻  77 

L2(𝑥) = 𝑊2	𝑥 + 𝑏(	 and 𝑊3  ∈	ℝ|𝐹𝐺|	𝑥	|𝐶𝐺|  78 

CG and FG represent the sets of coarse and fine 79 

grained senses in the dataset. 80 

Before to apply any of this linear layer, a mask is 81 

applied to the logits (the output of the encoder) in 82 

order to ignore all the logits value for the tokens 83 

mapped to word that doesn’t have to be 84 

disambiguated; differently from [2], this allows to 85 

have only one linear layer for all the polyseme 86 

instead of many ones, each for a polyseme. 87 

Image 1, (b) shows this mask process. 88 

2.3 One model for coarse and fine  89 

An aspect of the given task that has been 90 

assumed, is the capacity of a model to benefit from 91 

the hierarchical organization of the senses. 92 

To this purpose have been tested two model’s 93 

architecture: 94 

- Fine grained model to deduct coarse grained 95 

(DeductCg – Model 8) 96 

- Joint learning of coarse and fine grained and 97 

re-deduction of the fine grained (Fine-98 

Coarse – Model 9) 99 

2.3.1 Deduct Cg Architecture 100 

The first architecture that allows to deduct 101 

automatically the coarse-grained sense, consist in 102 

the training of the previous discussed architecture 103 

using the fine-grained classifier. Given the 104 

prediction of the model for a given word to be 105 

disambiguated the mapping file from the dataset is 106 

used to get the ”super-sense” label: the coarse 107 

grained sense. 108 

 109 

2.3.2 Fine-Coarse Architecture 110 

Another study has been conducted based on the 111 

assumption that both coarse and fine classifications 112 

could mutually enhance each other. Unlike the 113 

previously discussed approach of ascending the 114 

semantic hierarchy, this study takes a different 115 

stance. Rather than attempting to move upward, the 116 

model is designed to systematically learn the 117 

importance of both tasks concurrently over time. 118 

In the Experiments section will be discussed in 119 

the detail how this idea has been realized. 120 

3 Experiments 121 

3.1 Dataset 122 

Table 1 summarizes dataset statistics: It comprises 123 

6 files with sentences in natural language, part-of-124 

speech info, and lemmas. The sense vocabulary 125 

uses WordNet and is composed of 2158 CG senses 126 

and 4476 FG senses. Additionally, there's a 127 

mapping from fine-grained to coarse-grained 128 

senses. Training used accuracy, equivalent to 129 

micro-F1 for single-sense word classification. 130 

3.2 Experiments List and Setup 131 

Table 2 reports all the experiment that have been 132 

conducted in this study as well as their identifier. 133 

The metric that has been used is the F1-score, all 134 

the models have been trained for 100 epochs (some 135 

experiments for less epoch due to Colab session 136 

duration limit but all of them were not improving 137 

anymore). The optimizer is Adam. The learning 138 

rate has been reduced with a StepLR scheduler 139 

with step size = 1 and gamma = 0.1 starting from 140 

1e-3. 141 

3.3 Model number 1-2 142 

These models, trained for CG WSD follow exactly 143 

what is explained in the paragraph 2.2 and they 144 

both use the implementation 1 for the f. 145 

3.4 Model number 3-4-5 146 

Also these models are trained for CG WSD but 147 

they use instead the implementation 2 for f. 148 

3.5 Model number 6 149 

In order to leverage the capacity of LSTM of 150 

capturing contextual information, in this 151 

experiment, a bidirectional LSTM [7] with 2 layers 152 

on top of f is applied before to use the 𝐿& layer: 153 

𝑙𝑜𝑔𝑖𝑡𝑠56 = 𝑀𝑎𝑠𝑘56 ∗ 𝐿&(𝐿𝑆𝑇𝑀(𝑓)) 156 

Here in this experiment the best basic model (n. 2) 154 

of previous experiments is used to generate f. 155 

3.6 Model number 7 157 

In this experimental setup, employing the identical 158 

architecture as model 2, the focus was on training 159 

the model to forecast CG senses. This was achieved 160 

by enabling finetuning for the final 4 layers of the 161 

BERT model. The rationale behind this approach 162 

was to investigate the extent to which the 163 

specificity of BERT embeddings could influence 164 

the model's performance.  165 

3.7 Model number 8 166 

Building upon the insights provided in paragraph 167 

2.3.1, the model undertakes the dual prediction of 168 

both Fine-Grained (FG) senses and Coarse-169 

Grained (CG) senses. The calculation of logits, 170 
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instrumental in loss computation, is executed as 171 

follows: 172 

𝑙𝑜𝑔𝑖𝑡𝑠76 = 𝑀𝑎𝑠𝑘76 ∗ 𝐿/(𝑓) 173 

𝑝76 = max	(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑙𝑜𝑔𝑖𝑡𝑠76)) 174 

𝑝56 = FG2CG (𝑝76) 175 

FG2CG is the mapping function that use the given 176 

map file to convert a FG sense into CG sense. 177 

The central premise behind this model is its 178 

optimization for enhancing FG accuracy. The 179 

rationale underlying this approach is that if the 180 

model attains high performance levels in FG tasks, 181 

it is possible to excel in the CG context as well. In 182 

essence, a proficient model capable of grasping 183 

deeper semantic is expected to reach high 184 

performance in more abstract semantic task 185 

(clearly only when the task is organized in a formal 186 

hierarchical way). 187 

3.8 Model number 9 188 

To encode the idea in paragraph 2.3.2 in a neural 189 

architecture, the first step is to consider a Loss 190 

function that is the combination of the two losses:  191 

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠76 + 	𝐿𝑜𝑠𝑠56   192 

This setup enables the joint optimization of weights 193 

both to decrease CG and FG Loss. 194 

Regarding the classification layers: just after the 195 

BERT encoder as previous discussed, there are two 196 

linear layers (L1 and L3):  197 

𝑙𝑜𝑔𝑖𝑡𝑠56 =	𝑀𝑎𝑠𝑘56 ∗ B𝐿&(𝑓)C 198 

𝑙𝑜𝑔𝑖𝑡𝑠76 =	𝑀𝑎𝑠𝑘76 ∗ 𝐿2(𝑙𝑜𝑔𝑖𝑡𝑠56)) 199 

The primary classification layer (L1) initiates the 200 

classification process. Subsequently, the L3 layer 201 

comes into play, facilitating the transformation of 202 

logits into a mapping of fine-grained senses; 203 

Applying the candidate mask to  𝑙𝑜𝑔𝑖𝑡𝑠56  it 204 

possible to get the CG prediction, and in the same 205 

way it is possible to get FG prediction applying 206 

the other candidate mask to the 𝑙𝑜𝑔𝑖𝑡𝑠76 . Much 207 

like the prior model, the FG prediction is 208 

employed to deduce the CG prediction. However, 209 

a potential discrepancy between the CG prediction 210 

and the deduced CG prediction can arise. In 211 

anticipation of this, the deduced coarse-grained 212 

predictions are stored, addressing the likelihood of 213 

disparities between the two predictions. 214 

This model emits as output:	215 

𝑝76 	= max	(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑙𝑜𝑔𝑖𝑡𝑠76)) 216 

𝑝56 = max	(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑙𝑜𝑔𝑖𝑡𝑠76) 217 

𝑝56%9:; = FG2CG (𝑝76) 218 

3.9 Model number 10 219 

Random baseline models which consist of a 220 

random choice over the candidate for each word 221 

to disambiguate. 222 

4 Results 223 

The results in Table 3 reveal important insights 224 

about the models. Here are some key points: 225 

Embedder Impact on F1: The CG F1 scores show 226 

moderate variability across models. Surprisingly, 227 

the basic version of BERT outperforms the larger 228 

version, suggesting that greater complexity 229 

doesn’t necessarily yield to superior performance. 230 

This phenomenon raises question regarding the 231 

trade-off between number of parameters, 232 

generalization power and robustness of the 233 

outcomes. 234 

Implementation 2 for f: Although the F1 scores 235 

weren't high, using Implementation 2 for f sped up 236 

the forward pass due to smaller tensor dimensions. 237 

Direct CG Training: Models 2 achieve high CG 238 

F1 scores (0.9150), showing that even a basic 239 

architecture can handle the task well. 240 

Model 8 attains the highest metric value, despite a 241 

minimal difference from Model 2. This highlights 242 

that focusing on deeper semantic aspects yields 243 

the best performance at higher semantic levels. 244 

Joint Learning (Model 9): jointly learning 245 

hierarchical sense divisions, requires further 246 

exploration for comprehensive understanding. 247 

This experiment prompts further investigation. 248 

In summary, incorporating hierarchical semantic 249 

information involves a blend of neural and 250 

symbolic approaches, aligning with previous 251 

works. Future research will delve into this 252 

emerging AI model category. 253 

 254 
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 Training  Validation Test 
# Sentences 12339 685 686 
# sentence with 1 
candidate 

7723 451 425 

Sentence length 
mean 

40.80 40.95 41.22 

Table 1:  Statistic for the training validation and test data 
plus the count of the number of words with 1 candidate 

and the mean of words length. 

 

 

ID Granularity Embedder 
1 CG Bert Large Cased 
2 CG Bert Base Cased 
3 CG Bert Large Cased 
4 CG Bert Large 

uncased 
5 CG Bert Base Cased 
6 CG Bert Base Cased + 

LSTM 
7 CG Bert Based Cased 
8 FG&CG Bert Based Cased 
9 FG&CG Bert Based Cased 

Table 2:  Experiment List: 1,2,6,7 with implementation 1 
of the embedding, 2-3-4 with implementation 2, 8 with 

implementation 3 and 9 with implementation 4; 
Exp 8 has the last 4 layers of Bert finetuned. 

Exp 
 

 

 

ID CG F1 FG F1 
1 0.9094 / 
2 0.9150 / 
3 0.8752 / 
4 0.8629 / 
5 0.8668 / 
6 0.8920 / 
7 0.9045 / 
8 0.9151 0.8041 
9 0.9143 0.7976 
10 0.68 0.52 

Table 3: Metric value for the models discussed in the 
experiments section. The ID column indicated the model 

identifier. For model 8, is reported the deducted CG 
because is always higher than the predicted CG metric. 

Model 10 represent the random Baseline model 

 
 
 

 

 

Figure 1: (a) The encoding part of the model. (b) The mask process.  
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